THOUSANDS OF FREE BLOGGER TEMPLATES

Senin, 11 Januari 2010

Peran Nasional dalam Pengusahaan Migas Terus Berkembang

Peran Nasional dalam Pengusahaan Migas Terus Berkembang

JAKARTA. Peran pihak nasional dalam pengusahaan bidang hulu minyak dan gas bumi (migas) di Indonesia terus berkembang. Dibandingkan era awal pengusahaan hulu migas sekitar seratus tahun lampau, peran nasional saat ini telah tumbuh menjadi sekitar 29 persen. Peran ini amat strategis dan penting mengingat pengusahaan hulu migas memiliki ciri padat modal, padat teknologi dan beresiko tinggi.

"Sesuai dengan semangat pemerintah untuk senantiasa memajukan perusahaan nasional, saat ini perusahaan nasional yang terlibat telah mencapai 29% dibanding era awal pengusahaan migas di Indonesia," ujar Sutisna Prawira, Kepala Biro Hukum dan Humas Departemen Energi dan Sumber Daya Mineral saat memberikan penjelasan singkat mengenai Peran Migas Bagi Pembangunan Nasional di Jakarta, Selasa (17/2).

Kepala Biro Hukum dan Humas Departemen ESDM Sutisna Prawira menjelaskan, pengusahaan migas di Indonesia sudah berlangsung sejak jaman penjajahan Belanda, sekitar 100 tahun lalu. Seiring dengan perkembangan jaman, pengusahaan migas mengalami perubahan dan penyesuaian, terutama sejak kemerdekaan NKRI 1945 yang menetapkan pengusahaan migas dilakukan berdasarkan UUD 1945 dan diperuntukkan sebesar-sebesarnya bagi kemakmuran masyarakat.

Pada tataran operasionalnya, perkembangan pengusahaan migas diatur oleh Undang-Undang (UU) nomor 44 Prp. tahun 1960 tentang Pertambangan Migas. Secara berturut-turut UU tersebut disempurnakan oleh UU nomor 8 tahun 1971 tentang Perusahaan Pertambangan Migas Negara, dan saat ini berdasarkan UU nomor 22 tahun 2001 tentang Migas.

Pengusahaan sumber daya migas memiliki ciri padat modal, padat teknologi dan mengandung resiko investasi yang besar. Untuk itulah pengusahaan migas sejak awal telah membuka ruang bagi investor asing. Kendati demikian, seiring dengan berkembangnya kemampuan nasional, peran perusahaan nasional dalam bidang pengelolaan migas juga senantiasa memperlihatkan kemajuan.

Berdasarkan ciri pengusahaan sumber daya migas di atas dan keinginan untuk mendapatkan keuntungan sebesar-besarnya bagi negara, sejak tahun 1964 telah diberlakukan pola Production Sharing Contract (PSC). "Pola ini menempatkan negara sebagai pemilik dan pemegang hak atas sumber daya migas. Sedang perusahaan sebagai kontraktor," papar Sutisna Prawira, Kepala Biro Hukum dan Humas Departemen ESDM.

Pada pola PSC, investasi ditanggung sepenuhnya oleh perusahaan (sebagai kontraktor). Resiko investasi antara lain berupa hilangnya modal karena tidak menemukan migas menjadi beban kontraktor. Namun jika mendapatkan migas, investasi yang telah dikeluarkan kontraktor di-cover oleh hasil produksi atau dikenal dengan cost recovery. Selain itu hasil produksi migas juga dibagi antara negara dengan kontraktor yang diatur dalam kontrak. Pada saat ini PSC sudah mengalami kemajuan dengan ditetapkan First Tranche Petroleum (FTP) yaitu sebelum investasi dikeluarkan untuk kontraktor dari hasil produksi; dipotong dahulu (sekitar 20%) untuk negara.

Pada perkembangannya, berdasarkan UU nomor 8 tahun 1971, kewenangan negara/pemerintah dalam pengusahaan bidang hulu migas di Indonesia diwakili oleh Pertamina. Selanjutnya, berdasarkan UU nomor 22 tahun 2001 dilakukan oleh Badan Pelaksana usaha Hulu Migas.

Selain telah memberikan peran bagi pihak nasional, sub sektor migas telah membuktikan memberikan kontribusi yang sangat besar bagi penerimaan/keuangan negara. Bahkan pada tahun 1980-an, peran sub sektor migas terhadap APBN pernah mencapai lebih dari 70 persen. Saat ini peran sub sektor migas terhadap penerimaan/keuangan negara sebesar sekitar 31,62 persen.

Berdasarkan study yang dilakukan oleh Wood Mackenzie (2007), penerimaan bagian pemerintah (government take) untuk pengusahaan bidang hulu migas di Indonesia mencapai 79% (USD 75/barel dari existing asset) atau di atas rata-rata negara lain yaitu sebesar 73% (USD 68/barel).

"Pemerintah telah bekerja keras untuk mengusahakan sumber daya migas sebesar-besarnya bagi kemakmuran masyarakat. Keterlibatkan investasi asing semata-mata bertujuan untuk keperluan ini. Negara dan pemerintah tetap sebagai pemilik dan pemegang sah atas sumber daya migas," kata Sutisna Prawira.
PDFCetakE-mail

Geothermal power (from the Greek roots geo, meaning earth, and thermos, meaning heat) is power extracted from heat stored in the earth. This geothermal energy originates from the original formation of the planet, from radioactive decay of minerals, and from solar energy absorbed at the surface. It has been used for bathing since Paleolithic times and for space heating since ancient Roman times, but is now better known for generating electricity. Worldwide, geothermal plants have the capacity to generate about 10 gigawatts of electricity as of 2007, and in practice supply 0.3% of global electricity demand. An additional 28 gigawatts of direct geothermal heating capacity is installed for district heating, space heating, spas, industrial processes, desalination and agricultural applications.
Geothermal power is cost effective, reliable, sustainable, and environmentally friendly, but has historically been limited to areas near tectonic plate boundaries. Recent technological advances have dramatically expanded the range and size of viable resources, especially for applications such as home heating, opening a potential for widespread exploitation. Geothermal wells release greenhouse gases trapped deep within the earth, but these emissions are much lower per energy unit than those of fossil fuels. As a result, geothermal power has the potential to help mitigate global warming if widely deployed in place of fossil fuels.
The Earth's geothermal resources are theoretically more than adequate to supply humanity's energy needs, but only a very small fraction of it may be profitably exploited. Drilling and exploration for deep resources costs tens of millions of dollars, and success is not guaranteed. Forecasts for the future penetration of geothermal power depend on assumptions about technology growth, the price of energy, subsidies, and interest rates.

Contents

[hide]

Electricity



Geothermal electric power plants have been limited to the edges of tectonic plates until recently.
Twenty-four countries generated a total of 56,786 gigawatt-hours (GW·h) (204 PJ) of electricity from geothermal power in 2005, accounting for 0.3% of worldwide electricity consumption. Output is growing by 3% annually, because of a growing number of plants and improvements in their capacity factors. Because geothermal power does not rely on variable sources of energy, unlike, for example, wind or solar, its capacity factor can be quite large—up to 96% has been demonstrated.[1] The global average was 73% in 2005. The global installed capacity was 10 gigawatts (GW) in 2007.[2]
The largest group of geothermal power plants in the world is located at The Geysers, a geothermal field in California, United States.[3] As of 2004, five countries (El Salvador, Kenya, the Philippines, Iceland, and Costa Rica) generate more than 15% of their electricity from geothermal sources.[2]
Geothermal electric plants have until recently been built exclusively on the edges of tectonic plates where high temperature geothermal resources are available near the surface. The development of binary cycle power plants and improvements in drilling and extraction technology may enable enhanced geothermal systems over a much greater geographical range.[4] Demonstration projects are operational in Landau-Pfalz, Germany, and Soultz-sous-Forêts, France, while an earlier effort in Basel, Switzerland was shut down after it triggered earthquakes. Other demonstration projects are under construction in Australia, the United Kingdom, and the United States of America.[5]

Direct application

Approximately 70 countries made direct use of a total of 270 petajoules (PJ) of geothermal heating in 2004. More than half of this energy was used for space heating, and another third for heated pools. The remainder supported industrial and agricultural applications. The global installed capacity was 28 GW, but capacity factors tend to be low (30% on average) since heat is mostly needed in the winter. The above figures are dominated by 88 PJ of space heating extracted by an estimated 1.3 million geothermal heat pumps with a total capacity of 15 GW.[2] Heat pumps are the fastest-growing means of exploiting geothermal energy, with a global annual growth rate of 30% in energy production.[6] Most of these new heat pumps are being installed for home heating.
Direct heating in all its forms is far more efficient than electricity generation and places less demanding temperature requirements on the heat resource. Heat may come from co-generation with a geothermal electrical plant or from smaller wells or heat exchangers buried in shallow ground. As a result, geothermal heating is economic over a much greater geographical range than geothermal electricity. Where natural hot springs are available, the heated water can be piped directly into radiators. If the ground is hot but dry, earth tubes or downhole heat exchangers can collect the heat. But even in areas where the ground is colder than room temperature, heat can still be extracted with a geothermal heat pump more cost-effectively and cleanly than it can be produced by conventional furnaces.[7] These devices draw on much shallower and colder resources than traditional geothermal techniques, and they frequently combine a variety of other functions, including air conditioning, seasonal energy storage, solar energy collection, and electric heating. Geothermal heat pumps can be used for space heating essentially anywhere in the world.
Geothermal heat supports many applications. District heating applications use networks of piped hot water to heat buildings in whole communities. In Reykjavík, Iceland, spent water from the district heating system is piped below the pavement and sidewalks to melt snow.[8] Geothermal desalination has been demonstrated.

Environmental impact



Krafla Geothermal Station in northeast Iceland
Fluids drawn from the deep earth carry a mixture of gases, notably carbon dioxide (CO2), hydrogen sulfide (H2S), methane (CH4) and ammonia (NH3). These pollutants contribute to global warming, acid rain, and noxious smells if released. Existing geothermal electric plants emit an average of 122 kg of CO2 per megawatt-hour (MW·h) of electricity, a small fraction of the emission intensity of conventional fossil fuel plants.[9] Plants that experience high levels of acids and volatile chemicals are usually equipped with emission-control systems to reduce the exhaust. Geothermal plants could theoretically inject these gases back into the earth, as a form of carbon capture and storage.
In addition to dissolved gases, hot water from geothermal sources may hold in solution trace amounts of toxic chemicals such as mercury, arsenic, boron, antimony, and salt.[10] These chemicals come out of solution as the water cools, and can cause environmental damage if released. The modern practice of injecting spent geothermal fluids back into the Earth to stimulate production has the side benefit of reducing this environmental risk.
Direct geothermal heating systems will contain pumps and compressors, and the electricity they consume may come from a polluting source. This parasitic load is normally a fraction of the heat output, so it is always less polluting than electric heating. However, if the electricity is produced by burning fuels, then the net pollution of geothermal heating may be comparable to directly burning the fuel for heat. For example, a geothermal heat pump powered by electricity from a combined cycle natural gas plant would produce about as much pollution as a natural gas condensing furnace of the same size.[7] Therefore the environmental value of direct geothermal heating applications is highly dependent on the emissions intensity of the neighboring electric grid.
Plant construction can adversely affect land stability. Subsidence has occurred in the Wairakei field in New Zealand[11] and in Staufen im Breisgau, Germany.[12] Enhanced geothermal systems can trigger earthquakes as part of hydraulic fracturing. The project in Basel, Switzerland was suspended because more than 10,000 seismic events measuring up to 3.4 on the Richter Scale occurred over the first 6 days of water injection.[13]
Geothermal has minimal land and freshwater requirements. Geothermal plants use 3.5 square kilometres per gigawatt of electrical production (not capacity) versus 32 and 12 square kilometres for coal facilities and wind farms respectively.[11] They use 20 litres of freshwater per MW·h versus over 1000 litres per MW·h for nuclear, coal, or oil.[11]

Economics

Geothermal power requires no fuel, and is therefore immune to fuel cost fluctuations, but capital costs tend to be high. Drilling accounts for over half the costs, and exploration of deep resources entails significant risks. A typical well doublet in Nevada can support 4.5 megawatts (MW) of electricity generation and costs about $10 million to drill, with a 20% failure rate.[14] In total, electrical plant construction and well drilling cost about 2-5 million € per MW of electrical capacity, while the levelised energy cost is 0.04-0.10 € per kW·h.[15] Enhanced geothermal systems tend to be on the high side of these ranges, with capital costs above $4 million per MW and levelized costs above $0.054 per kW·h in 2007.[16] Direct heating applications can use much shallower wells with lower temperatures, so smaller systems with lower costs and risks are feasible. Residential geothermal heat pumps with a capacity of 10 kilowatt (kW) are routinely installed for around 1–3 thousand dollars per kilowatt. District heating systems may benefit from economies of scale if demand is geographically dense, as in cities, but otherwise piping installation will dominate capital costs. The capital cost of one such district heating system in Bavaria was estimated at somewhat over 1 million € per MW.[17] Direct systems of any size are much simpler than electric generators and have lower maintenance costs per kW·h, but they must consume electricity to run pumps and compressors. Some governments subsidize geothermal power, either for electricity generation or direct applications.
Geothermal power is highly scalable: a large geothermal plant can power entire cities while a smaller power plant can supply a rural village.[18]
Chevron Corporation is the world's largest private producer of geothermal electricity.[19] The most developed geothermal field is the Geysers in California.

Resources



Enhanced geothermal system 1:Reservoir 2:Pump house 3:Heat exchanger 4:Turbine hall 5:Production well 6:Injection well 7:Hot water to district heating 8:Porous sediments 9:Observation well 10:Crystalline bedrock
The Earth's internal heat naturally flows to the surface by conduction at a rate of 44.2 terawatts, (TW,)[20] and is replenished by radioactive decay of minerals at a rate of 30 TW.[21] These power rates are more than double humanity’s current energy consumption from all primary sources, but most of it is not recoverable. In addition to heat emanating from deep within the Earth, the top ten metres of the ground accumulates solar energy (warms up) during the summer, and releases that energy (cools down) during the winter.
Beneath the seasonal variations, the geothermal gradient of temperatures through the crust is 25–30 °C per kilometre (km) of depth in most of the world. The conductive heat flux is approximately 0.1 MW/km2 on average. These values are much higher near tectonic plate boundaries where the crust is thinner. They may be further augmented by fluid circulation, either through magma conduits, hot springs, hydrothermal circulation or a combination of these.
A geothermal heat pump can extract enough heat from shallow ground anywhere in the world to provide home heating, but industrial applications need the higher temperatures of deep resources.[11] The thermal efficiency and profitability of electricity generation is particularly sensitive to temperature. The more demanding applications receive the greatest benefit from a high natural heat flux, ideally from using a hot spring. If no hot spring is available, the next best option is to drill a well into a hot aquifer. If no adequate aquifer is available, an artificial one may be built by injecting water to hydraulically fracture the bedrock. This last approach is called hot dry rock geothermal energy in Europe, or enhanced geothermal systems in North America. Much greater potential may be available from this approach than from conventional tapping of natural aquifers.[4]
Estimates of the electricity generating potential of geothermal energy vary from 35 to 2000 GW depending on the scale of investments.[2] Upper estimates of geothermal resources assume enhanced geothermal wells as deep as 10 kilometres (6 mi), whereas existing geothermal wells are rarely more than 3 kilometres (2 mi) deep.[2] Drilling at this depth is now possible in the petroleum industry, although it is an expensive process. The deepest research well in the world, the Kola superdeep borehole, is 12 kilometres (7 mi) deep.[22] This record has recently been imitated by commercial oil wells, such as Exxon's Z-12 well in the Chayvo field, Sakhalin.[23]

Sustainability

Geothermal power is considered to be sustainable because the heat extraction is small compared to the Earth's heat content. The Earth has an internal heat content of 1031 joules (3·1015 TW·hr).[2] About 20% of this is residual heat from planetary accretion, and the remainder is attributed to higher radioactive decay rates that existed in the past.[24] Natural heat flows are not in equilibrium, and the planet is slowly cooling down on geologic timescales. Human extraction taps a minute fraction of the natural outflow, often without accelerating it.
Even though geothermal power is globally sustainable, extraction must still be monitored to avoid local depletion.[21] Over the course of decades, individual wells draw down local temperatures and water levels until a new equilibrium is reached with natural flows. The three oldest sites, at Larderello, Wairakei, and the Geysers have all reduced production from their peaks because of local depletion. Heat and water, in uncertain proportions, were extracted faster than they were replenished. If production is reduced and water is reinjected, these wells could theoretically recover their full potential. Such mitigation strategies have already been implemented at some sites. The long-term sustainability of geothermal energy has been demonstrated at the Lardarello field in Italy since 1913, at the Wairakei field in New Zealand since 1958,[25] and at The Geysers field in California since 1960.[26]

History



The oldest known pool fed by a hot spring, built in the Qin dynasty in the 3rd century BC.
Hot springs have been used for bathing at least since paleolithic times.[27] The oldest known spa is a stone pool on China’s Lisan mountain built in the Qin dynasty in the 3rd century BC, at the same site where the Huaqing Chi palace was later built. In the first century AD, Romans conquered Aquae Sulis and used the hot springs there to feed public baths and underfloor heating. The admission fees for these baths probably represent the first commercial use of geothermal power. The world's oldest geothermal district heating system in Chaudes-Aigues, France, has been operating since the 14th century.[11] The earliest industrial exploitation began in 1827 with the use of geyser steam to extract boric acid from volcanic mud in Larderello, Italy.
In 1892, America's first district heating system in Boise, Idaho was powered directly by geothermal energy, and was copied in Klamath Falls, Oregon in 1900. A deep geothermal well was used to heat greenhouses in Boise in 1926, and geysers were used to heat greenhouses in Iceland and Tuscany at about the same time.[28] Charlie Lieb developed the first downhole heat exchanger in 1930 to heat his house. Steam and hot water from geysers began heating homes in Iceland starting in 1943.


Global geothermal electric capacity. Upper red line is installed capacity;[15] lower green line is realized production.[2]
In the 20th century, demand for electricity led to the consideration of geothermal power as a generating source. Prince Piero Ginori Conti tested the first geothermal power generator on 4 July 1904, at the same Larderello dry steam field where geothermal acid extraction began. It successfully lit four light bulbs.[29] Later, in 1911, the world's first commercial geothermal power plant was built there. It was the world's only industrial producer of geothermal electricity until New Zealand built a plant in 1958.
By this time, Lord Kelvin had already invented the heat pump in 1852, and Heinrich Zoelly had patented the idea of using it to draw heat from the ground in 1912.[30] But it was not until the late 1940s that the geothermal heat pump was successfully implemented. The earliest one was probably Robert C. Webber's home-made 2.2 kW direct-exchange system, but sources disagree as to the exact timeline of his invention.[30] J. Donald Kroeker designed the first commercial geothermal heat pump to heat the Commonwealth Building (Portland, Oregon) and demonstrated it in 1946.[31][32] Professor Carl Nielsen of Ohio State University built the first residential open loop version in his home in 1948.[33] The technology became popular in Sweden as a result of the 1973 oil crisis, and has been growing slowly in worldwide acceptance since then. The 1979 development of polybutylene pipe greatly augmented the heat pump’s economic viability.[31]
In 1960, Pacific Gas and Electric began operation of the first successful geothermal electric power plant in the United States at The Geysers in California.[34] The original turbine lasted for more than 30 years and produced 11 MW net power.[35]
The binary cycle power plant was first demonstrated in 1967 in Russia and later introduced to the USA in 1981.[34] This technology allows the generation of electricity from much lower temperature resources than was previously viable. In 2006, a binary cycle plant in Chena Hot Springs, Alaska, came on-line, producing electricity from a record low fluid temperature of 57 °C.[36]


SDM Perminyakan Menyongsong 2010


Perusahaan Nasional di Sektor Migas

Perusahaan Nasional di Sektor Migas Baru 29% PDF Print E-mail
Written by Administrator   
Wednesday, 20 May 2009 09:51
JAKARTA(SI) – Keterlibatan perusahaan nasional dalam industri minyak dan gas serta coal bed methane (CBM) nasional hingga saat ini masih minim, yakni hanya mencapai 29,1%.

Sementara perusahaan asing yang mengelola industri migas dalam negeri sebesar 60,4% dan konsorsium 10,4%. ”Ini posisi terbaru berdasarkan tanda tangan kontrak kerja sama (KKS) migas dan CBM 2001–Mei 2009,” kata Dirjen Migas Evita Herawati Legowo di Jakarta kemarin.

Sebelumnya, pemerintah menargetkan akan melibatkan perusahaan nasional dalam industri migas mencapai 50% di 2025 mendatang. Selain itu, target pemerintah berikutnya adalah menjaga produksi minyak di level 1 juta barel per hari (bph).

Dengan perkiraan rata-rata pertumbuhan kebutuhan energi di Indonesia mencapai 7% per tahun, Evita mengakui pencapaian target produksi di 2025 itu bukan pekerjaan ringan. Karena itu, pihaknya menargetkan elastisitas energi di bawah 1 dengan pemanfaatan energi alternatif mencapai minimal 17%.

Rinciannya, bahan bakar nabati (BBN) sebanyak5%; panasbumi5%; campuran seperti biomasa, air,dan angin 5%; dan batu bara cair 2%. Pada 2006 lalu, elastisitas energi Indonesia mencapai 1,8 dan tahun lalu menurun menjadi 1,6. Jika dibanding Jerman dan Jepang, Indonesia masih tertinggal karena tingkat elastisitas energi dua negara itu di bawah 1.

Pihaknya menargetkan pemakaian barang dan jasa lokal mencapai 91% dan penggunaan sumber daya mineral nasional sebesar 99%. Pihaknya tidak berani menargetkan angka 100% karena sifat industri migas yang padat modal, berteknologi tinggi, dan berisiko tinggi. Artinya, pihaknya masih membutuhkan investor asing.

”Masih harus ada tempat untuk asing,”ujar Evita. Direktur Pembinaan Usaha Hulu Migas Departemen ESDM Edi Hermantoro menuturkan, dilihat dari tren KKS dari 2001–2008 mengalami peningkatan. Hal itu akibat UU No 22/2001 tentang Migas. ”Dalam konteks ini, tidak ada perbedaan (perusahaan) domestik dan internasional,”paparnya.

Berdasarkan UU tersebut,yang berhak melaksanakan kegiatan investasi adalah BUMN,BUMD, koperasi dan UKM, swasta nasional, dan swasta asing.Sementara untuk kegiatan industri CBM,didominasi perusahaan nasional dengan total nilai investasi CBM dari 2008–2009 mencapai USD64,2 juta.

Lokasi penyebaran CBM terbesar ada di Kalimantan Timur, Kalimantan Selatan,dan Sumatera Selatan. Produksi CBM ini bisa dimanfaatkan untuk mendukung program gas kota.Pasalnya,potensi gas yang dihasilkan dari pengeringan sumur Blok CBM mencapai 0,2–0,4 mmscfd.

Dengan gas 1 mmscfd, lanjut Evita, bisa memenuhi kebutuhan energi ke 4.000 rumah tangga. Karena itu, pihaknya sedang merevisi aturan pengembangan CBM tersebut. Selain dengan mengeluarkan Permen No 1 dan No 3 untuk meningkatkan keterlibatan perusahaan nasional, juga menggunakan tenaga kerja Indonesia dan mengutamakan kontrak menggunakan jasa dan barang dalam negeri.

Tak hanya itu,Pihaknya juga mewajibkan KKS asing yang menemukan cadangan migas untuk memberikan jatah 10% ke BUMD. Sementara itu, Departemen ESDM telah memberikan rekomendasi kepada PT Pertamina (persero) untuk mengekspor avtur. Rekomendasi itu diberikan selama tiga bulan.

Evita Herawati Legowo mengatakan, pemberian izin tersebut lantaran Pertamina dinilai berhasil melaksanakan program pengalihan (konversi) minyak tanah ke elpiji. Keberhasilan program konversi tersebut membuat pasokan minyak tanah menjadi berlebih sehingga dapat dikonversi menjadi bahan bakar pesawat jet.

”Spesifikasi minyak tanah dan avtur itu mirip, tinggal diproses sedikit bisa jadi avtur.Kami memberikanrekomendasieksporkarena kebutuhan dalam negeri terpenuhi,” kata Evita di Jakarta kemarin. (j erna)

Sumber: Seputar Indonesia
 

explotation

Explorer Kazimierz Nowak
Exploration is the act of searching or traveling a terrain for the purpose of discovery, e.g. of unknown people, including space (space exploration), for oil, gas, coal, ores, caves, water, (Mineral exploration, botanical exploration, or prospecting), or information.
Although exploration has existed as long as human beings, its peak is seen as being during the Age of Discovery for Europe's contact with the rest of the world, and Major explorations after the Age of Discovery for scientific exploration in the modern era.

Contents

[hide]

[edit] Other uses